On the Numerical Stability of Fourier Extensions

نویسندگان

  • Ben Adcock
  • Daan Huybrechs
  • J. Martín-Vaquero
چکیده

An effective means to approximate an analytic, nonperiodic function on a bounded interval is by using a Fourier series on a larger domain. When constructed appropriately, this so-called Fourier extension is known to converge geometrically fast in the truncation parameter. Unfortunately, computing a Fourier extension requires solving an ill-conditioned linear system, and hence one might expect such rapid convergence to be destroyed when carrying out computations in finite precision. The purpose of this paper is to show that this is not the case. Specifically, we show that Fourier extensions are actually numerically stable when implemented in finite arithmetic, and achieve a convergence rate that is at least superalgebraic. Thus, in this instance, ill-conditioning of the linear system does not prohibit a good approximation. In the second part of this paper we consider the issue of computing Fourier extensions from equispaced data. A result of Platte, Trefethen & Kuijlaars states that no method for this problem can be both numerically stable and exponentially convergent. We explain how Fourier extensions relate to this theoretical barrier, and demonstrate that they are particularly well suited for this problem: namely, they obtain at least superalgebraic convergence in a numerically stable manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry

The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...

متن کامل

On the resolution power of Fourier extensions for oscillatory functions

Functions that are smooth but non-periodic on a certain interval have only slowly converging Fourier series, due to the Gibbs phenomenon. However, they can be represented accurately by a Fourier series that is periodic on a larger interval. This is commonly called a Fourier extension. Fourier extensions have been mostly used to solve PDE’s on complicated domains, by embedding the domain into a ...

متن کامل

Numerical stability of nonequispaced fast Fourier transforms

This paper presents some new results on numerical stability for multivariate fast Fourier transform of nonequispaced data (NFFT). In contrast to fast Fourier transform (of equispaced data), the NFFT is an approximate algorithm. In a worst case study, we show that both approximation error and roundoff error have a strong influence on the numerical stability of NFFT. Numerical tests confirm the t...

متن کامل

A Stability Barrier for Reconstructions from Fourier Samples

We prove that any stable method for resolving the Gibbs phenomenon – that is, recovering high-order accuracy from the first m Fourier coefficients of an analytic and nonperiodic function – can converge at best root-exponentially fast in m. Any method with faster convergence must also be unstable, and in particular, exponential convergence implies exponential ill-conditioning. This result is ana...

متن کامل

Numerical stability of fast trigonometrictransformsDaniel

This paper presents stability results for various fast trigonometric transforms. We consider the numerical stability of the classical fast Fourier transform (FFT) with respect to diierent precomputation methods for the involved twiddle factors and show the strong innuence of precomputation errors on the numerical stability of the FFT. The examinations are extended to fast algorithms for the com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Foundations of Computational Mathematics

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014